organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Colin H. L. Kennard,^a* Helen G. McFadden^b and Karl A. Byriel^c

^aSchool of Molecular and Microbial Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia, ^bDivision of Plant Industry, CSIRO, GPO Box 160, Canberra, ACT 2601, Australia, and ^cCentre for Drug Design and Development, The University of Queensland, Brisbane, Queensland 4072, Australia

Correspondence e-mail: c.kennard@uq.edu.au

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å Disorder in main residue R factor = 0.043 wR factor = 0.152 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 3-{[(2-chlorophenyl)sulfonyl]imino}-2-{[(3,5-dimethoxyphenyl)amino]carbonyl}-3-(methylsulfanyl)propanoate

The title compound, $C_{21}H_{23}ClN_2O_7S_2$, is a representative of moderately active hydroxyacid synthase inhibitors. The structure has a sulfonylimine bond [-N=C(-SMe)-CH] and not sulfonylamino [-NH-C(-SMe)=C], contrary to expectations. There is a strong intramolecular hydrogen bond between the imine H and the acid carbonyl group, and a weaker one between the imine carbonyl group and a benzene H atom.

Comment

This report is part of a general study on acetohydroxyacid synthase inhibitors (McFadden et al., 1993). The title compound, (I), was reported in that paper as a molecule with a double bond between atoms C2 and C3. However, a crystal structure determination (Fig. 1 and Table 1) shows that the double bond occurs between atoms N1 and C2 [1.339 (6) Å], indicating a minimum energy structure with a sulfonylimine link. There are intramolecular N1-H1...O32 and C12- $H12 \cdots O21$ hydrogen bonds in (I). Compared with the inactive 3-[(2-chlorophenyl)sulfonylamino]-2-cyano-Ncompound (3,5-dimethoxyphenyl)-3-methylsulfanyl-2-propenamide (Kennard et al., 2003), compound (I) has different torsion angles $[N1-C2-C3-C4 = 155.5 (5) \text{ and } -179.67 (17)^{\circ}, C2-C4 = 155.5 (17)^{\circ}, C2-C4 = 155$ C3-C4-N5 = -69.2 (7) and -3.9 (3)°, and C3-C4-N5-S6 = 0.7 (9) and $170.64 (15)^{\circ}$].

Experimental

The synthesis of (I) has been reported by McFadden et al. (1993).

Crystal data	
$C_{21}H_{23}CIN_2O_7S_2$	$D_x = 1.420 \text{ Mg m}^{-3}$
$M_r = 514.98$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 25
a = 8.546 (4) Å	reflections
b = 24.166 (3) Å	$\theta = 10-12^{\circ}$
c = 12.057 (8) Å	$\mu = 0.38 \text{ mm}^{-1}$
$\beta = 104.67 \ (2)^{\circ}$	T = 293 (2) K
$V = 2409 (2) \text{ Å}^3$	Plate, colourless
Z = 4	$0.30 \times 0.05 \times 0.05$ mm

C 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 31 October 2003 Accepted 17 November 2003 Online 19 December 2003

Figure 1

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level. The occupation factors of atoms C35A and C35B are 40 and 60%, respectively.

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.933$, $T_{max} = 0.979$ 4570 measured reflections 4233 independent reflections 1419 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.152$ S = 0.914233 reflections 307 parameters $R_{int} = 0.037$ $\theta_{max} = 25.0^{\circ}$ $h = -4 \rightarrow 10$ $k = -11 \rightarrow 28$ $l = -14 \rightarrow 13$ 3 standard reflections frequency: 120 min intensity decay: none

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0626P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.011$ $\Delta\rho_{max} = 0.24 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$ Table 1

Selected geometric parameters (Å, $^\circ).$

C2-C3	1.546 (6)	C3-C4	1.540 (7)
C12-C11-N1-C2 C11-N1-C2-C3 N1-C2-C3-C4 C2-C3-C4	-11.3 (8) -172.8 (5) 155.6 (5) (0.4) (7)	C3-C4-N5-S6 C4-N5-S6-C61 N5-S6-C61-C62	1.0 (8) 112.7 (5) 65.8 (5)

The terminal atom C35 of the ethyl group is disordered over two sites, C35A and C35B. Their occupation factors were assigned, from refinement, to be 40 and 60%, respectively. The ratios of atomic displacement parameters for the various directions for C35A are large and indicate serious disorder.

Data collection: *SDP* (Frenz, 1985); cell refinement: *SDP*; data reduction: *WinGX* (Farrugia, 1999); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97; molecular graphics: *PLATON*98 (Spek, 1988); software used to prepare material for publication: *SHELXL*97.

The authors thank the Australian Research Council, the University of Queensland and Griffith University for financial support for the purchase of the diffractometer.

References

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

- Frenz, B. A. (1985). Enraf-Nonius SDP Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
- Kennard, C. H. L., McFadden, H. G. & Byriel, K. A. (2003). Acta Cryst. E59, 0922–0923.
- McFadden, H. G., Huppatz, J. L. & Kennard, C. H. L. (1993). Z. Naturforsch. Teil C, 48, 356–363.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1988). J. Appl. Cryst. 21, 578-579.